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Abstract

Shocks in astrophysical uids can generate suprathermal particles by �rst order (or
di�usive) Fermi acceleration. In the test particle regime there is a simple relation
between the spectrum of the accelerated particles and the jump conditions at the
shock. This simple picture becomes complicated when the pressure of the accelerated
particles becomes comparable with the pressure of the shocked uid, so that the
non-linear backreaction of the particles becomes non negligible and the spectrum
is a�ected in a substantial way. Though only numerical simulations can provide a
fully self-consistent approach, a more direct and easily applicable method would be
very useful, and would allow to take into account the non-linear e�ects in particle
acceleration in those cases in which they are important and still neglected.

We present here a simple semi-analytical model that deals with these non-linear
e�ects in a quantitative way. This new method, while compatible with the previous
simpli�ed results, also provides a satisfactory description of the results of numerical
simulations of shock acceleration.

Key words: cosmic rays, high energy, origin, acceleration

1 Introduction

Di�usive shock acceleration is thought to be responsible for acceleration of
cosmic rays in several astrophysical environments. Most of the observational
evidence for this mechanism, also known as �rst order Fermi acceleration, has
been provided by studies of heliospheric shocks, but there are indirect lines
of evidence that acceleration occurs at other shocks. A particularly impres-
sive example was provided a few years ago by the observation of gamma ray
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emission from the supernova remnant SN1006 [1]. These observations could
be interpreted as inverse Compton emission of very high energy electrons, ac-
celerated at the shock on the rim of SN1006, though other radiation processes
may contribute [2].

Shock acceleration has been studied carefully and a vast literature exists on
the topic. Some recent excellent reviews have been written [3{6]. Some of the
more problematic aspects of the theory of particle acceleration at astrophysical
shocks have been understood, while others are still subject of investigation.

One of the problems that are harder to face is the problem of the injection of
particles in the acceleration region. Only particles with a Larmor radius larger
than the thickness of the shock are actually able to feel the discontinuity at
the shock. The shock thickness is of the order of the Larmor radius of thermal
protons, so that only a small fraction of the particles can be accelerated.

The calculation of the injection eÆciency is quite problematic, for several rea-
sons: �rst, the distribution function of thermal particles is steeply decreasing
with momentum, so that the number of accelerated particles changes wildly
with changing injection momentum. Moreover the distribution of the particles
in the shock frame is strongly anisotropic at these low momenta, which adds
to the diÆculty of obtaining a straight analytical answer. Second, the injec-
tion of particles from the thermal distribution and their subsequent di�usive
transport is thought to be due to the scattering against plasma waves, which
are likely to be excited by the particles themselves, which makes the problem
intrinsically non-linear. This non-linearity is exacerbated by the backreaction
of the particles on the structure of the shocked uid [7]. The only way to have
a complete quantitative picture of the problem of shock acceleration is to use
numerical simulations [8,6,9{11].

All these complicated e�ects, which seem to be important in several astro-
physical situations, are nevertheless often neglected, mainly because of the
lack of an approach that allows to take them into account without the use
of complicated numerical simulations which are usually of restricted use. As
a consequence, in most of the applications of the di�usive shock acceleration
to astrophysical situations, the assumption of test particles is adopted, even
in those cases where this approximation works poorly. Numerical simulations
show however that even when the fraction of particles injected from the plasma
is relatively small, the energy channelled into these few particles can be close
to the kinetic energy of the unshocked uid, making the test particle approach
unsuitable. The most visible e�ect is on the spectrum of the accelerated par-
ticles, which shows a peculiar attening at the highest energies, due to the
backreaction of accelerated particles on the uid. The consequences on the
spectra of secondary particles and radiation processes are clear.
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The need to have a theoretical understanding of the non-linear e�ects in parti-
cle acceleration fueled many e�orts in �nding some e�ective though simpli�ed
picture of the problem. The structure of shocked uids with a backreaction of
accelerated particles was investigated in [12{16] in a uid approach. The ther-
modynamic quantities were calculated including the e�ects of cosmic rays,
but the approach did not provide information on the spectral shape of the
accelerated particles.

In Ref. [17] a perturbative approach was adopted, in which the pressure of
accelerated particles was treated as a small perturbation. By construction
this method provides an answer only for weakly modi�ed shocks.

An alternative approach was proposed in [18{21]. This approach is based on
the assumption that the di�usion of the particles is suÆciently energy depen-
dent that di�erent parts of the uid are a�ected by particles with di�erent
average energies. The way the calculations are carried out implies a sort of
separate solution of the transport equation for subrelativistic and relativistic
particles, so that the two spectra must be connected at p � mc a posteriori.

Recently, in [22{24], the e�ects of the non-linear backreaction of accelerated
particles on the maximum achievable energy were investigated, together with
the e�ects of geometry. The solution of the transport equation was written
in [24] in an implicit form, and then expanded in terms of the unperturbed
(linear) solution.

Recently, some analytical solutions were also presented for the non-linear shock
acceleration, in the particular case of B�ohm di�usion coeÆcient [26,27].

The need for a practical solution of the acceleration problem in the non-linear
regime was recognized in [28], where a simple analytical approximation of the
non-linear spectra was presented. In this model the spectrum of the acceler-
ated particles was assumed to consist of a broken power law, with three slopes
characterizing the low, intermediate and high energy regimes. The basic fea-
tures of the spectra derived from numerical simulations were reproduced with
this method.

In the present paper we propose an approach that puts together some of
the elements introduced in [18], [24] and [28] and provides a semi-analytical
solution for the spectrum of accelerated particles and for the structure of
the shocked uid. The method proposed is of simple use, can be adapted to
several situations and provides results in very good agreement with numerical
simulations, and with simpli�ed models as that in [28].

The paper is structured as follows: in x2 we describe the general problem
of linear and non-linear shock acceleration; in x3 we explain in detail our
approach to non-linear e�ects in shock acceleration. In x4 we discuss the results
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of our model and compare them with the predictions of the model in Ref.
[28] and with the results of some numerical simulations. Our discussion and
conclusions are presented in x5.

2 Shock acceleration: linear and non-linear

In this section we discuss the basic elements of shock acceleration and in-
troduce our approach to the description of the non-linear e�ects due to the
backreaction of the accelerated particles on the shocked uid.

For simplicity we limit ourselves to the case of one-dimensional shocks, but
the introduction of di�erent geometrical e�ects is relatively simple, and in fact
many of our conclusions will be not a�ected by geometry. The non-linear e�ects
are restricted to the mutual action of the shocked uid and the accelerated
particles. In other words, the present work does not include self consistently the
production and the absorption of plasma waves by the accelerated particles.
This simpli�cation is common to the approaches in [24] and [28].

The equation that describes the di�usive transport of particles in one dimen-
sion is
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where f(x; p) is the distribution function, u is the uid velocity and D is
the di�usion coeÆcient. The injection of particles is assumed to occur only
immediately upstream of the shock, so we write the source function as Q =
Q0(p)Æ(x), where x = 0 corresponds to the position of the shock front. For
monoenergetic injection, the function Q0(p) has the following form:

Q0(p) =
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4�p2inj

Æ(p� pinj); (2)

where pinj is the injection momentum and u1 is the uid velocity immediately
upstream (u1 = u(0+)). Ninj is the number density of particles injected at the
shock, parametrized here as Ninj = �Ngas;1, where Ngas;1 is the gas density at
x = 0+. The boundary condition at the shock reads:
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where u2 is the uid velocity downstream. Here we called f0 = f(0; p) the
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distribution function at the shock position.

A useful way of handling eq. (1) was suggested in Ref. [24] (a similar approach
was also adopted in Ref. [25]), and consists of integrating this equation in the
variable x from x = 0+ (upstream) to x = +1 (far upstream). After some
simple algebraic steps, in which we make use of eq. (3), we obtain the following
equation:
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where the stationarity assumption was adopted and we assumed (D@f=@x)2 =
0 . We have introduced the quantity:
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1

f0(p)

1Z
0

dx

 
du

dx

!
f(x; p); (5)

and again we called u1 and u2 the uid velocities at x = 0+ and x = 0�

respectively. With this formalism the compression factor at the shock is Rsub =
u1=u2. The function up, at each momentum p has the meaning of average uid
velocity felt by a particle with momentum p while di�using upstream. Since
the di�usion is in general p-dependent, particles with di�erent energies will
feel a di�erent compression coeÆcient, and the correspondent local slope of
the spectrum will be p-dependent. Note that, according to eq. (5), the velocity
up must be a monotonically increasing function of p.

The function up describes the mutual interaction between the accelerated par-
ticles and the uid. In other words, if we �nd the way of determining the
function up, as we show later, we also determine the spectrum of the acceler-
ated particles.

Eq. (5) is clearly an implicit de�nition of up, meaning that up depends on the
unknown function f . However, eq. (5) allows us to extract important physical
information. For the monoenergetic injection in eq. (2) the solution can be
implicitly written as
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where we put (for g = 5=3):

qs =
3Rsub

Rsub � 1
: (7)
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Eq. (6) tells us that the spectrum of accelerated particles has a local slope
given by

Q(p) = �
3up

up � u2
�

1

up � u2

dup
d ln p

: (8)

The problem of determining the spectrum of accelerated particles would then
be solved if the relation between up and p is found 2 . This is the scope of the
next section.

3 The gas dynamics of modi�ed shocks

The velocity, density and thermodynamic properties of the uid can be deter-
mined by the usual conservation equations, including now the pressure of the
accelerated particles. We write these equations between a point far upstream
(x = +1), where the uid velocity is u0 and the density is �0 = mNgas;0, and
a generic point where the uid upstream velocity is up (density �p). The index
p will denote quantities measured at the point where the uid velocity is up.
We call this generic point xp.

The mass conservation implies:

�0u0 = �pup: (9)

Conservation of momentum reads:

�0u
2
0 + Pg;0 = �pu

2
p + Pg;p + PCR;p; (10)

where Pg;0 and Pg;1 are the gas pressures at the point x = +1 and x = xp
respectively, and PCR;p is the pressure in accelerated particles at the point xp
(we used the symbol CR to mean cosmic rays, to be interpreted here in a
very broad sense). In writing eqs. (9) and (10) we implicitly assumed that the
average velocity up as de�ned in eq. (5) coincides with the uid velocity at the
point where the particles with momentum p turn around to recross the shock.

Our basic assumption, similar to that used in [18], is that the di�usion is p-
dependent and that therefore particles with larger momenta move farther away
from the shock than lower momentum particles. This assumption is expected

2 In order to determine the spatial distribution of uid velocity it is necessary to
specify the exact di�usion coeÆcient as function of x and p. In this paper we do
need this information, therefore the choice of D does not a�ect our conclusions.
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to describe what actually happens in the case of di�usion dependent on p. As
a consequence, at each �xed xp only particles with momentum larger than p
are able to a�ect the uid. Strictly speaking the validity of the assumption
depends on how strongly the di�usion coeÆcient depends on the momentum p,
but the results should not be critically a�ected by this assumption. Moreover,
in case of strong shocks there are arguments that suggest that the strong
turbulence excited by the shock should produce a B�ohm di�usion coeÆcient,
so that the dependence D(p) on p should be at least linear.

According to this assumption, only particles with momentum >
� p can reach

the point x = xp, therefore

PCR;p =
4�

3

pmaxZ
p

dpp3v(p)f(p); (11)

where v(p) is the velocity of particles whose momentum is p, and pmax is the
maximum momentum achievable in the speci�c situation under investigation.
In realistic cases, pmax is determined from geometry or from the duration of the
shocked phase, or from the comparison between the time scales of acceleration
and losses. Here we consider it as a parameter to be �xed a priori. From
eq. (10) we can see that there is a maximum distance, corresponding to the
propagation of particles with momentum pmax such that at larger distances
the uid is una�ected by the accelerated particles and up = u0.

We will show later that for strongly modi�ed shocks the integral in eq. (11) is
dominated by the region p � pmax. This improves even more the validity of our
approximation PCR;p = PCR(> p). This also suggests that di�erent choices for
the di�usion coeÆcient D(p) may a�ect the value of pmax, but at �xed pmax

the spectra of the accelerated particles should not be appreciably changed.

Assuming an adiabatic compression of the gas in the upstream region, we can
write

Pg;p = Pg;0

 
�p
�0

!g

= Pg;0

 
u0
up

!g

; (12)

where we used the conservation of mass, eq. (9). The gas pressure far upstream
is Pg;0 = �0u

2
0=(gM

2
0 ), where g is the ratio of speci�c heats (g = 5=3 for

an ideal gas) and M0 is the uid Mach number far upstream. Note that eq.
(12) cannot be applied at the shock jump, where the adiabaticity condition is
clearly violated.

We can rewrite eq. (10) in a convenient way, by dividing it by �0u
2
0 and using

7



the mass conservation. We then obtain:
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where we have explicitely written the distribution function f(p) as a power
law with local slope Q(U), and we put U = up=u0.

Di�erentiating the previous equation with respect to p we obtain:
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Note that the velocity up changes as a consequence of the pressure added by
non-thermal particles, therefore the function U(p) must be a monotonically
increasing function of the particle momentum. Since U(p) and dU=d ln p are
always non-zero, we can calculate their logarithm, so that eq. (15) becomes:
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where we put DU = dU=d lnp. The following equality is easily demonstrated:
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so that the equation for DU becomes:
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Solving this di�erential equation provides U(p) and therefore the spectrum of
accelerated particles, through eq. (6).

The operative procedure for the calculation of the spectrum of accelerated
particles is simple: we �x the boundary condition at p = pinj such that
U(pinj) = u1=u0 for some value of u1 (uid velocity at x = 0+). The evo-
lution of U as a function of p is determined by eq. (18). The physical solution
must have U(pmax) = 1 because at p >

� pmax there are no accelerated particles
to contribute any pressure. There is a unique value of u1 for which the uid
velocity at the prescribed maximum momentum pmax is upmax

= u0 (or equiv-
alently U(pmax) = 1). Finding this value of u1 completely solves the problem,
since eq. (18) provides U(p) and therefore the spectrum of accelerated par-
ticles, calculated according to eq. (4). Conservation of energy can be easily
checked.

An illustration of this procedure is presented in �g. 1 where we considered the
following special set of parameters: the Mach number far upstream isM0 = 43,
and the gas temperature is T0 = 106 K, corresponding to u0 = 5� 108 cm/s.
The parameter � is taken to be 4� 10�3, and the injection of particles occurs
at pinj = 10�2mc, where m is the mass of the accelerated particles. In this
paper we assume that the accelerated particles are protons. The maximum
momentum is pmax = 105mc. The three curves which are plotted correspond
to the function U(p) for Rsub = 2 (dotted line), Rsub = 1:5 (dashed line) and
Rsub = 1:817 (solid line). It is immediately evident that only for Rsub = 1:817
the function U(p) reaches unity at p = pmax. Our method then provides the
value of Rsub and consequently the values of the other parameters.

Fig. 1 is very useful for understanding the physical meaning of the local ve-
locity up. Particles with large momenta feel compression factors up=u2 which
are larger than those felt by low momentum particles. Large compression fac-
tors correspond to locally atter spectra, so that the spectrum of accelerated
particles is expected to become atter at large momenta. We de�ne the total
compression factor Rtot = u0=u2. Note that the compression factor at the gas
subshock is now Rsub � 4, the value expected for a strong shock in the test
particle regime.
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Fig. 1. U(p) as a function of momentum, for di�erent values of the compression
factor at the subshock. The uid dynamics must be una�ected at p = pmax which
implies that U(pmax) = 1. This condition determines the right value of Rsub.

4 Results

The calculations illustrated in the previous section are here tested versus pre-
vious models and numerical simulations. In particular we compare our results
with the predictions of the simple approach presented in [28], that we briey
summarize. In [28] the spectrum of accelerated particles has a prescribed
shape, made of three power laws, in the low (pinj � p � mc), intermedi-
ate (mc � p � 10�2pmax) and high (10�2pmax � p � pmax) energy regimes.
The slope in the three regions is then calculated by requiring mass, momentum
and energy conservation.

We �rst check that our model reproduces the results in the linear regime,
where the test particle approximation can be adopted, and then we study the
transition to the non-linear regime. For this purpose, we consider a shock with
Mach number M0 = 5, with a gas temperature T0 = 108 K. We choose pinj =
10�2mc and pmax = 105mc, and we study the result for di�erent values of �,
as plotted in Fig. 2. The solid line is obtained for � = 10�5; our model gives
for this case Rsub = Rtot = 3:57, which is exactly the value obtained from test
particle theory: Rsub = (8M0=3)=((2=3)M0+2), for g = 5=3. The test particle
approximation would provide the same compression factor for any value of �.
Our results for � = 10�3 and � = 10�2 are plotted in Fig. 2 as dotted and
dashed lines respectively. These two cases result in (Rsub; Rtot) = (3:45; 3:83)
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for � = 10�3 and (Rsub; Rtot) = (2:85; 4:49) for � = 10�2. The transition from
unmodi�ed shocks to strongly modi�ed shocks is evident.

Fig. 2. Spectra of accelerated particles for low Mach number (M0 = 5). Increasing the
value of � determines the transition from an unmodi�ed shock (solid line, � = 10�5)
and a modi�ed shock (dashed and dotted lines, with � = 10�2 and � = 10�3 respec-
tively).

In all the cases the common feature of the modi�ed shocks is a steepening
of the spectrum (in comparison with the linear result) at low energy and a
attening at high energies. From the phenomenological point of view this can
be of paramount importance since it may change the spectral features of the
secondary radiation produced by the interactions of the accelerated particles.

The more interesting case is that of strongly modi�ed shocks, where we expect
the pressure in accelerated particles to become comparable with the kinetic
energy of the upstream uid. Intuitively this is mainly the case for high Mach
number shocks, though we also show that there are exceptions. We can com-
pare our results with those of the model in Ref. [28].

Let us consider the case M0 = 43, u0 = 5� 108 cm/s, pinj = 10�2mc, and let
us study the resulting spectra for � = 10�3 and di�erent values of pmax. The
results are plotted in Fig. 3.

The results of [28] are plotted in the form of crosses (pmax = 103mc), stars
(pmax = 105mc) and diamonds (pmax = 107mc). The corresponding continuous
lines are the results of our model.
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Fig. 3. Comparison between the prediction of our model (lines) and those of Ref.
[28] (symbols). The three sets of curves are obtained for pmax = 103mc (solid line
and crosses), pmax = 105mc (dotted line and stars) and pmax = 107mc (dashed line
and diamonds).

Some comments are in order: the slope of the spectrum of accelerated particles
predicted in our model at p � pmax is approximately equal to that obtained
in [28]. This is not surprising since the model in [28] is based on a three power
law approximation, and the slope of the spectrum at the highest energies is
calculated using an asymptotic expression derived from eq. (6). At low values
of pmax our results are in very good agreement with the general features of
the solutions in [28]. At increasingly larger values of pmax the agreement is
not extremely good but still reasonable, if one takes into account that the
following three assumptions were made in [28]: 1) the velocity of the particles
is assumed to be p=m for p � mc and equal to c for p � mc; 2) the momentum
at which there is a change in slope at low energy is forced to be at p = mc;
3) the position of the point where there is the change in slope at intermediate
energies is forced to be at p = 10�2pmax. In our model all the three assumptions
are released and the spectra are smooth. This is the reason for the slightly
di�erent position of the dip in our spectra (p4f(p)) when compared with those
derived according to [28]. Similar conclusions hold for di�erent values of the
parameters.

A more interesting comparison, to test the e�ectiveness of our model is that
with the results of numerical simulations. Since a similar comparison was
carried out in [28] to test that model, we consider here the same situation,
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so that a full cross-check is possible. The case we consider is that of a shock
with Mach number M0 = 128 and a uid temperature of T = 106 K. The
results provided by a numerical simulation are plotted in Fig. 5 of Ref. [28]
and reproduced in our Fig. 4 as a dashed line. From the simulation we can
extract the values of some parameters: the injection momentum is pinj =
7� 10�3mc, while the maximum momentum is pmax = 105mc. Note that the
simulation does not provide these parameters in a clear way, because there
the thermal and non-thermal particles are treated in the same way, therefore
some approximation is involved in deriving these numerical values. The best
�t of the model in [28] to the results of the simulation implies Rsub = 2:68 and
Rtot = 52 using � = 5� 10�3. Using the same value of the injection eÆciency
�, our model predicts Rsub = 2:365 and Rtot = 51:9. The spectra for the model
in [28] and for our model are plotted in Fig. 4 as a solid light broken line, and
as a thick solid line respectively. The improvement provided by our model is
evident (note that we only used the values of � and pinj derived in [28], though
an even better agreement can be found by slightly changing these values, that,
as we stressed above, are not clearly determined by the simulation).

Fig. 4. Comparison between the predictions of our model (thick solid line) and the
results of simulations (dashed line) and the approximation in Ref. [28] (solid light
line).

A basic issue raised in [28] is that of the accurate description of the slope
of the spectrum of accelerated particles at p � pmax. The importance of this
point is due to the at spectral shape at high momenta, which gives the main
contribution to the total energy budget in accelerated particles, for strongly
modi�ed shocks. We show our prediction for the local slope in Fig. 5, as a
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function of the momentum. The most noticeable feature of this �gure is the
slope � 3:5 at p � pmax, very close to that predicted by numerical simulations.

Fig. 5. Slope of the spectrum of accelerated particles according with our model, with
the parameters used to obtain the curves in Fig. 4.

One comment is in order concerning the injection: in all the cases consid-
ered above, the injection momentum and �, the injection eÆciency, are chosen
independently. In a realistic case (for instance in the simulation) the two pa-
rameters would be actually related to each other. For instance, if the particles
are extracted from the thermal distribution, then one can write in a very gen-
eral way, that the injection momentum is proportional to the sound speed
downstream (cs;2), times the particle mass, pinj = �mcs;2. The parameter �
must be large enough that the particles can feel the thickness of the shock,
determined either by the interaction pathlength of the particles, or by the
Larmor radius of the thermal protons in the local magnetic �eld. Hence, �
must be at least a few, and indeed it is usually assumed to be in the range
� � 4 � 10. If the expression pinj = �mcs;2 is adopted, and the injection is
assumed to occur from the thermal distribution, then the parameter � is no
longer free, and can be determined self-consistently. However it is wise to keep
in mind that in this case � would change wildly for small changes in �, due
to the exponential suppression in the distribution function at momenta larger
than the thermal average.

We continue now the analysis of the predictions of our model and the compar-
ison with the results of Ref. [28]. An important issue is that of determining
where the transition from unmodi�ed to strongly modi�ed shock occurs, as a
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function of the parameters of the calculation.

In Fig. 6 we plot the compression ratios (total and at the subshock) for di�erent
values of the maximum momentum of the accelerated particles. The solid lines
represent the results of our model, compared with the values predicted by the
simple approach in [28] (dashed lines). There is a good agreement between the
two approaches. For � = 10�3 the shock becomes strongly modi�ed already for
pmax a few times larger than mc, con�rming that even relatively low injection
eÆciencies cause the shock to be a�ected by the backreaction of the accelerated
particles.

Fig. 6. Compression factors according with our model (solid lines) and the simple
model (dashed lines), as functions of pmax, for the values of the parameters reported
in the �gure. The upper curves represent Rtot and the lower curves represent Rsub.

In Fig. 7 the same compression factors are plotted versus the minimum (in-
jection) momentum pinj. Here some di�erences between our model and that
in Ref. [28] are visible. The results can be interpreted as an evidence that our
model predicts the onset of the modi�ed shock phase, at slightly larger values
of pinj compared to the simple model.

The results of a similar study are plotted in Fig. 8, where the dependence
of Rtot and Rsub is investigated versus the injection eÆciency �. Again, our
model predicts that the shock starts to be modi�ed at values of � slightly larger
than for the simpli�ed model. In particular for the values of the parameters
reported in Fig. 8, we obtain that the shock starts to be modi�ed at � >

� 10�4,
while the simple model gives a modi�ed shock for � >

� 3 � 10�5. Finally in
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Fig. 7. Compression factors according with our model (solid lines) and the simple
model (dashed lines) as functions of the injection momentum. The upper curves
represent Rtot and the lower curves represent Rsub.

Fig. 9 we investigate the dependence of Rtot and Rsub on the Mach number
of the uid at in�nity (upstream). We specialize our prediction to the case
� = 10�3, pinj = 10�2mc and pmax = 105mc, but clearly similar plots can
be produced for di�erent regions of the parameter space. The results of our
model are in very good agreement with the results of [28]. Our model however
predicts a slightly lower value of the critical Mach number Mcr, above which
the shock is no longer modi�ed, so that Rtot and Rsub settle down at the usual
(linear) value of � 4. As found in [28], the relation between Rtot and M0 is

Rtot /M
3=4
0 , for M0 �Mcr.

5 Discussion and Conclusions

We proposed a semi-analytical method to calculate the spectrum of particles
accelerated at shocks, and the velocity pro�le of the shocked uid, including
the non-linear e�ects due to the backreaction of the non-thermal particles on
the dynamics of the shocked uid.

The approach presented in this paper provides results that are in good agree-
ment with the output of numerical simulations on shock acceleration and also
with the results of a previous model aimed to a simple description of the non-
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Fig. 8. Compression factors according with our model (solid lines) and the simple
model (dashed lines) as functions of the injection eÆciency �. The upper curves
represent Rtot and the lower curves represent Rsub.

linear e�ects [28]. Compared with the latter, our model provides a better �t to
numerical results, and is not based on a priori assumptions on the spectrum
of accelerated particles in some energy ranges.

We con�rm the main results on shock acceleration, known from simple models
and from simulations: i) the backreaction of the accelerated particles is impor-
tant, even in those cases in which a small fraction of the particles injected at
the shock is actually accelerated to suprathermal energies. For � >

� 10�4 the
shock becomes modi�ed by the non-thermal pressure and both the velocity
�eld of the shocked uid and the spectrum of the accelerated particles are af-
fected. The minimum value of � for which the shock is modi�ed in our model
is slightly larger than that predicted in [28]. ii) For linear shocks the maximum
compression factor that can be achieved is 4 (for g = 5=3) which corresponds
to spectra / p�4. This result is obtained forM0 !1. When the backreaction
becomes relevant, the structure of the shocked uid is changed into a smooth
decrease of the uid speed from u0 at in�nity (e�ectively at some distance
Dmax) to u1 at the position of the gas (ordinary) subshock. While at the sub-
shock it is still true that the maximum compression factor is 4, the overall
compression factor (Rtot) between downstream and Dmax can be arbitrarily
large. iii) The large total compression factors for strongly modi�ed shocks re-
sult in a attening of the spectra of accelerated particles at high energy. The
slope there tends to � 3:5 (atter than 4). The slope of the spectrum at low
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Fig. 9. Compression factors according with our model (solid lines) and the sim-
ple model (dashed lines) as functions of the Mach number M0. The upper curves
represent Rtot and the lower curves represent Rsub.

energy is determined by the compression factor at the subshock, and is usually
steeper than the slope predicted in linear theory. iv) In general, increasing the
Mach number corresponds to an increasingly more modi�ed shock, up to a
critical Mach number Mcr. At M > Mcr, the total and subshock compression
factors both converge to the linear value of 4 and the shock behaves as an
ordinary strong shock (it is no longer an eÆcient accelerator).

Although the calculations reported in the paper refer to the case of a plane
(one dimensional) shock and the e�ects of waves (Alfv�en heating) have not
been included, these changes are almost straightforward. In fact, for spherical
shocks, the expression for the distribution function f0(p) remains unchanged
[eq. (6)], although the de�nition of up is formally di�erent (it reects the
geometry). All the rest of the calculation remains una�ected and most of the
results still hold. The case of spherical symmetry would be relevant for shocks
related to supernova remnants, as discussed in [24].

The introduction of the heating due to damping of Alfv�en waves implies a
change in the relation between Pg;p and Pg;0 but this change can be easily
written in a way which is useful for our purposes. For instance, generalizing a
discussion in [28], in the approximation of large Alfv�en Mach number (MA =
u0=vA, where vA is the Alfv�en speed, assumed constant in all the uid) we can
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write

Pg;p

Pg;0
'

 
�p
�0

!g (
1 + (g � 1)

M2
0

MA

"
1�

 
�0
�p

!g#)
: (19)

Clearly the e�ects of Alfv�en heating can be neglected as long as M2
0 � MA.

Introducing eq. (19) [instead of eq. (12)] in eq. (10), it is easy to derive an
equation similar to eq. (18), that can be solved for U(p). The spectrum of
accelerated particles is then obtained using the same procedure illustrated
above. The basic e�ect of the Alfv�en heating is to reduce the total compression
factors, and make the spectra at high energy slightly steeper than found in
x4.

We conclude by stressing that the non-linear e�ects discussed here appear to
be relevant even for a small injection eÆciency, and their phenomenological
consequences can be critically important. For instance, as an application of the
simple model presented in [28], in Ref. [29] the spectra of secondary radio and
gamma radiation in supernova remnants were calculated. The di�erences with
respect to the results obtained by adopting the test particle approximation
are impressive.

In this prospective, the semi-analytical model presented here, being of easy
use and having an immediate physical interpretation, provides the suitable
tool to estimate the phenomenological consequences of non-linearity in shock
acceleration, in the cases where it is unpractical to have access to numerical
simulations.
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